AI Software and the GPU Industry

A Symbiotic Evolution

June 2025 · Dinesh


The GPU-AI Foundation

Why GPUs Power AI:

Software Dependencies:


Software Drives Hardware Innovation

AI Software Explosion:

Software Stack Impact: | Layer | Examples | GPU Impact | |——-|———-|————| | Frameworks | PyTorch, JAX | Dynamic compute graphs | | Compilers | XLA, Triton | Kernel fusion optimization | | Inference | TensorRT, vLLM | Latency-optimized compute | | Infrastructure | Ray, KServe | Multi-GPU scalability |


Hardware-Software Co-Evolution

**Feedback Loop:** ``` AI Software Needs → GPU Architecture Changes ↑ ↓ Performance Bottlenecks ← New Hardware Features ``` **Real Examples:** - **Mixed-precision:** FP16, bfloat16, FP8 support - **Communication:** NCCL, NVLink for multi-GPU - **Memory:** SRAM improvements for transformer models - **Specialized units:** Transformer Engines in Hopper
![Co-Evolution Cycle](image.png)

Emerging Trends:

Key Takeaways:


Thank You

Dinesh 📧 dineshkumarb@gmail.com 🌐 https://dkbhaskaran.github.io/ 📞 +1 999 999 9999